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Summary.  Natura l  popula t ions  are current ly the basic 
mater ia l  for studying forest tree breeding,  but  little is 
known on the genotypic spat ial  structures in these 
stands. The use o f  gene markers,  such as isozymes, 
leads to the de terminat ion  of  par t  o f  the allelic constitu- 
tion of  individuals.  A method  is presented here to 
est imate the degree o f  genetic relat ionship between any 
pair  o f  genotypes. A French Picea  abies  popula t ion  is 
analyzed by these means  and a slight but  significant 
correlat ion between est imated genetic relat ionship and 
topographic  distance is found. 
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Introduction 

Natural  populat ions  are at present  the basic mater ia l  
for the forest tree breeder.  Genet ic  var iabi l i ty  is impor-  
tant  in these large cont inuous perennia l  populat ions ,  
yet the maintenance  mechanisms o f  this var iabi l i ty  are 
not  clearly unders tood (Hamrick et al. 1979). Two con- 
flicting opinions exist in the l i terature:  a) pol len  dis- 
persal a lone is sufficient for these large cont inuous 
populat ions  to be panmict ic  and  genetically quite 
homogeneous;  b) small  distances o f  pol len and seed 
dispersal  generate clusters o f  genet ical ly re la ted in- 
dividuals  in a populat ion.  

So far, most  of  the studies on the genetic structure 
of  a par t icular  popula t ion  o f  a l logamic species have 
consisted o f  panmixia  tests. Panmixia  is often tested for 
and found to be present  in most  cases. The value of  
these tests can be questioned,  however,  because of  the 
small  sample  size and methods  o f seed lo t  sampling.  

For  breeding forest trees, the two alternatives,  pan-  
mixia or clusters, are impor tan t  as most  o f  the selection 
schemes start by evaluat ing the genetic qual i ty  o f  
populat ions  or  trees by using offspring harvested from 
natural  stands. In fact, one m a y  wonder  whether  a 
popula t ion  or a tree is d iscarded for its real  genetic 
qual i ty  or  because o f  a higher  inbreeding coefficient. 

Previously, many studies of inbreeding were, in fact, 
estimates of the proportion of self-fertilization as opposed to 
outcrossing in plant populations. Shaw et al. (1979), however, 
interpreted the observed discrepancies between outcrossing 
rates estimated with a single locus or with multilocus methods 
as a reflection of the family structure in a Pseudotsuga 
menziesii population. This impact of population structure on 
the apparent outcrossing rate of grain sorghum is clearly 
shown in a study by Ellstrand et al. (1983). However, the rare 
studies undertaken in order to detect family clusters seem to 
show that spatial genotypic structures exist in plant popula- 
tions. This is revealed by different methods of investigation: 
- pollen and seed dispersal, followed by radioactive tracers 
(Schmidt 1970), or by insect-pollinator flight studies, on 
Lupinus texensis, (Schaal 1980), and on Lithosperrnum cara- 
liniense (Kester et al. 1968), etc. 
-crosses  between neighbouring plants (Coles and Fowler 
1976). These authors found a clear relationship between 
inbreeding depression and closeness to the male parent in two 
white spruce populations. Trees separated by more than 100 m 
seemed to be unrelated. 
- genetic markers such as isozymes, as they are easy to detect 
(Antlfinger 1982; Handel 1983). Schaal (1974, 1975) showed 
the existence of a strong genetic structure in a Liatris cy- 
lindracea population. She noted that genetic divergence over 
distance appears to be a function of random gene frequency 
fluctuations even if difference of allelic frequency between 
adjacent 3 m s squares are as high as 20%. Only when 15 
polymorphic loci are considered together does the pattern of 
genetic variation in the population emerge. On forest material, 
Sakai et al. (1971) and Park (1972) showed, by the analysis of 
one locus, a high relationship between Cryptomeria japonica 
trees 25 m apart. Similar results have been found with Pinus 
sylvestris by studying one rare allele in offsprings (Mtiller 
1977), or by studying spatial distribution of rare alleles (Rudin 
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etal .  1977). Considering each locus separately, Tigerstedt 
(1973) found a complete random gene distribution in Picea 
abies. While the prospected area was small a spatial structure 
seems to appear  visually with the three loci together. Finally, 
working on Pinus ponderosa, Linhart et al. (1981) found that 
tree clusters 3 0 m  apart  can have as large Nei genetic 
distances as populations several kilometers distant from one 
another. 

These  s tud ies  i n d i c a t e  t ha t  the  m a t i n g  sys tem o f  the  

forest  m a t e r i a l  c a n  b e  d e f i n e d  as a sys tem o f  p r e f e r e n -  

t ial  m a t i n g  b e t w e e n  n e i g h b o u r i n g  trees,  i n c l u d i n g  se l f  

fer t i l iza t ion .  

The  p r e s e n t  s t udy  c o n c e r n s  a Picea  abies p o p u l a -  

t ion.  I t  was  a i m e d  at  a n s w e r i n g  the  fo l lowing  ques t ions :  

does  a spa t i a l  gene t i c  s t r uc tu r e  exis t  b e t w e e n  the  

m a t u r e  t rees  o f  the  p o p u l a t i o n ,  a n d  w h a t  is the  scale. 

The  g e n o t y p e  o f  each  p r o s p e c t e d  t ree  is d e t e r m i n e d  for 

seve ra l  i s o e n z y m a t i c  cha rac te r i s t i c s  a n d  the  gene t i c  

r e l a t i o n s h i p  b e t w e e n  each  p a i r  o f  t rees  is c a l c u l a t e d  

wi th  a n e w  m e t h o d  d e s c r i b e d  in  this  pape r .  

Material and methods 

1 Material 

Picea abies is a monoecious species. Its pollen grains have 
large air sacs which enable them to travel long distances 
(several kilometers in a strong wind). The seeds fall from the 
cones remaining on the tree. If  the reach of pollen and seeds is 
defined as being the radius of  a circle within which 95% of the 
pollen and seeds emitting from the center land on the ground, 
the reach of the pollen amounts to 260 m and the reach of the 
seeds to 65 m (Mtiller 1976; Schmidt-Vogt 1978). Lundkvist 
(1979) found a self-fertilization rate as high as 26% but  most 
authors consider that the proportion of trees which would 
grow to be less than 1%. 

This study was realized with a natural French population 
of Picea abies L. The forest stand, located on the second 
plateau of the Jura at Bonnetage (N 47~ ', E 6~ ', altitude 
875 m), is known as one of the best reforestation crops in 
France. The management  archives indicate that in 1856 the 
stand constituted of one to thirty-year-old natural  seedlings 
dominated by seed-trees of  different ages, which were cut that 
year. We can consider this forest as a "futaie r rgul i r re"  
("evenly aged high forest"): all trees of the generation G +  1 
have nearly the same age as they come from crosses between 
parental trees (generation G) chosen and kept by the foresters 
("semenciers" = "seed trees"). 

�9 Seeds from 104 parents were collected in 1968 over an 
area of 950•  m (Fig. 1), with 35 seed lots, on a systematic 
transect from East to West. However, this population is a 
mixture between Picea abies and Abies alba in a ratio 50/50, 
with a lower density of  Picea abies in the eastern part. This 
fact may introduce a sampling bias. 

The main characteristics of the sample stand were: mean age 
= 150 years; height = 4 0 ~ 5 m ,  circumference = 160-220 cm. 

2 Extraction and electrophoretic methods 

For each parent, 20 endosperms were crushed together with a 
Kontes' potter in 1 ml of a 10 mM Tris, 25 mM KC1 buffer 
(pH = 7.4) for 2 min in ice. After a refrigerated centrifugation 
(23,000 g, 20 min) the supernatants were preserved at -80  ~ 
With this method, genotypes can be determined with only one 
extraction. 

For electrophoresis, each extract was placed in a 7.5% 
polyacrylamide slab gel well (BIORAD material). Both the gel 
and electrode buffer was 89 mM Tris, 89 mM Boric acid, 2.5 M 
EDTA pH = 8.3. 

Eight enzyme systems were analysed: glutamate oxalo- 
acetate transaminase - esterase - fluorescent esterase - peroxi- 
dase - phosphoglucomutase - malate dehydrogenase - amy- 
lase - glutamate dehydrogenase. 

. . . . . . . . . . . . . . . . . . . . .  . . . . .  ; v  

0 50 m �9 AMY 1.d 
+ M D H  1,b 

Fig. 1. Spatial distribution of  the 104 prospected trees in the Bonnetage stand. Eleven rare alleles from the total sample size of 25 
are indicated by different symbols (trees bearing the same number,  from 1 to 11, have the same genotype) 



First genetic analyses 

Eleven loci were resolved with the electrophoretic 
techniques used: glutamate oxaloacetate transaminase 
(GOT1; GOT2), esterase (EST1; EST2), fluorescent 
esterase (ESTFLUO 1), peroxidase (PEROX1), phos- 
phoglucomutase (PGM 1), malate dehydrogenase 
(MDH 1-MDH 2), amylase (AMY 1), glutamate 
dehydrogenase (GDH1). Descriptions of the formal 
genetics are to be found in the literature for seven of 
them: GOT1, GOT2, EST1, EST2, MDH1, MDH2, 
GDH1 (Lundkvist 1978); others showed segregation 
patterns consistent with a single locus inheritance by 
endosperm analysis: EST FLUO 1, PEROX 1, PGM 1, 
AMY 1 (Brunel, unpublished data). 

1 Spatial allelic distribution 

A spatial allelic distribution can be drawn for each 
locus. Nine maps were realized but only eleven rare 
alleles (frequency less than 10%) are represented on 
Fig. 1. Visual analyses indicate a non-random distribu- 
tion of alleles for some loci, but the irregular tree 
localisation makes any visual analysis subject to 
questioning. 

2 Allelicfrequencies, independence andpanmixia tests 

All the trees are homozygotes for the GDH1 and 
MDH2 loci. Table 1 indicates the allelic frequencies for 
the nine loci showing polymorphism. Because of the 
suspected sampling bias, two estimations were made: 
one with the 104 trees, the other with only 47 trees 
chosen in such a way that only one tree is found in 
each 50 x 50 m square. In fact, differences between the 
two samples seem to be small, but all the further 
analyses will be executed with both frequency estima- 
tions. 

While very little data exists on loci linkage on Picea 
abies, Lundkvist (1979) showed EST1 and EST2 to be 
on the same chromosome. 

The consistency of the observed genotype distribu- 
tion conditionally to allelic frequencies with loci inde- 
pendence can be tested. Since all loci of a chromosome 
are ordered, independence of several loci is equivalent 
to independance within any pair of loci. At each locus 
we considered two sets of genotypes: the most frequent 
genotype, and groupings of all others. A Fisher's exact 
probability test has been performed on each of the 36 
different 2 x 2  contingency tables obtained. No evi- 
dence appears of a discrepancy to the independence 
hypothesis. 

In a large population, genotypic frequencies are 
predicted by the Hardy and Weinberg equilibrium 
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Table 1. Allelic frequencies of the nine loci showing poly- 
morphism, estimated with the 104 trees and 47 trees samples 
(see text) 

Locus Alleles 104 trees 47 trees 
sample sample 

GOT 1 a 0.048 0.054 
b 0.952 0.946 

GOT2 a 0.543 0.564 
b 0.423 0.404 
c 0.034 0.032 

ESTFLUO 1 a 0.091 0.075 
b 0.909 0.925 

EST 1 a 0.038 0.054 
b 0.924 0.915 
c 0.038 0.031 

EST 2 a 0.014 0.075 
b 0.236 0.223 
c 0.750 0.702 

PGM 1 a 0.082 0.054 
b 0.918 0.946 

MDH 1 a 0.937 0.968 
b 0.058 0.032 
c 0.005 0.000 

A M Y 1  a 0.25 0.234 
b 0.620 0.627 
c 0.092 0.085 
d 0.038 0.054 

PEROX 1 a 0.034 0.044 
b 0.822 0.776 
c 0.144 0.180 

under the assumption of random mating in the absence 
of migration, mutation, selection and genetic drift. All 
studied loci are considered to be markers (unselected 
by themselves and not linked to selected genes) and 
independent. Thus, if the number of parent trees was 
large enough, in the absence of genetic spatial struc- 
ture, Hardy and Weinberg's equations should be veri- 
fied. On the contrary, if a genetic spatial structure exists 
as a product of mating in one neighbourhood, Hardy 
and Weinberg's equations would not be verified and an 
excees of homozygotes can be expected. A chi-square 
test was performed on each locus. In order to observe a 
minimum number of trees of each genotype, rare alleles 
have been pooled together in such a way that only 
three genotype classes have been defined: two, one or 
zero copies of the most frequent allele. Thus, we could 
test only a subset of all Hardy and Weinberg's equa- 
tions. These loci are considered independent, as are the 
chi-square test statistics. Two loci seem to have an 
excessively large number of homozygotes while one 
locus appears to have too many heterozygotes. 

However, the probability of a first type error in- 
creases with the number of independent tests per- 
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formed, as does, therefore, the probability of  finding a 
surprising result. The final picture is not clear. 

As a product of forest management, the actual stand might 
have been produced by a reduced number of seed trees. This 
fact may be the reason why one population falls outside the 
Hardy and Weinberg's equilibrium. The parent trees may not 
have the same fertility and they may vary in their individual 
ovule and pollen production (Mtiller-Starck etal. 1983). 
Therefore, allelic frequencies in male and female gametes can 
be quite different, producing a population with an excess of 
heterozygotes (see Ziehe 1982). 

Another consequence o f  such a situation is that the 
observed genotypes, because of  possible genealogical 
relationships, are not independent stochastic variables. 
This make the chi-square test no longer valid since 
there is not an underlying multinomial distribution on 
which it could be based. 

The difficulty in obtaining a clear inerpretation of  
the genetic structure o f  this population led us to search 
for a new model for estimating genetic relationships 
which considered electrophoretic data and our knowl- 
edge about this stand. In fact, we are interested not 
only in the kinship rate o f  the population but rather in 
a characterization o f  genetic closeness between any two 
trees and the size of  a possible spatial structure. 

A simple genetic distance to imagine is to add each 
allelic difference between two trees and to compare this 
estimation with topographic distance. This was done 
but no relationship was found. Therefore, we tried to 
find a more efficient estimation with the assumption 
that two individuals have a higher probability to be 
related when they have in common alleles with low 
allelic frequencies. The model is presented in the 
sections. 

Presentation of a genetic relationship estimation model 

The parental stand from which seed trees have been 
selected must be regarded as the last generation of  a 
collected forest which either followed Hardy and Wein- 
berg's equilibrium or which presented an excess of  
homozygotes if there was a genetic spatial structure. 
No important  excess o f  heterozygotes could be present, 
since at each generation the number  o f  parents must 
have been large enough to discard any significant 
random effect of  male and female differential contri- 
butions. As the parental population is considered to 
have been produced by many trees, the probability o f  a 
close genetic relationship between two seed trees is 
negligible and the only genetic relations to be con- 
sidered in the sampled generation are: 

- "non related" N R = A I  
- "hal f  sibs" HS = A2 
- "full sibs" FS = A3 

In this complete system of  disjointed events, for any 
pair (x, y) of  trees and with Ai the kinship degree, we 
can define the probability of  each possible parental 
relationship conditionally to the pair genotype (Bayes' 
theorem): 

P{(x, y)/Ai} �9 P(Ai) 
P{Ai/(x, y)} = 3 

P{(x, y)/Ai} �9 P(Ai) 
i= l  

The different terms of  this equation can be esti- 
mated with the electrophoretic data. 

1 Consequences of kinship on the distribution 
of genotypic pairs 

Let P {(x, y)/Ai} be the probability of  observing the 
pair (x, y) under the hypothesis of  the Ai type o f  
kinship. 

For one locus each pair o f  genotypes x and y can 
fall into one o f  the seven categories: 

Geno- Geno- 
typex typey 

(1) ij kl - both are heterozygotes, and they 
have no common allele 

(2) ij ik - both are heterozygotes and they 
have one common allele 

(3) ij ij - both are heterozygotes and they 
have two common alleles 

(4) ii jk - one is homozygote, the other hetero- 
zygote and they have no common 
allele 

(5) ii ij - one is homozygote, the other hetero- 
zygote and they have one common 
allele 

(6) ii jj - both are homozygotes; they have 
no common allele 

(7) ii ii - both are homozygotes; they have the 
same allele 

Under the hypothesis that the parental population 
followed the Hardy and Weinberg equilibrium, we can 
calculate the probability of  observing a pair (x, y) for 
each of  the three relationships FS, HS and NR, as a 
function of  allelic frequencies in the parental popula- 
tion. 

Table 2 summarizes the probability P { (x, y)/Ai} of  
observing each of  the seven possible meetings between 
alleles of  a same locus, considering three different 
relationships (one example is given there for a simpler 
explanation in Table 2 a). Obviously, each possible pair 
of  genotypes has a different probability according to 
the kinship between the two observed individuals. 
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Table 2. Probability of a pair (x, y) above the 3 hypotheses of non related, half  and full sib: P(x, y)/Ai, Pi, Pj, Pk, P1 are the frequen- 
cies in the parental population G of the alleles i, j, k, 1 of the locus L 

Category Non-related Halfsib Full  sib Variation of 
P (x, y) /Ai  

( l)  
ij kl 8 Pi Pj Pk P1 4 Pi Pj Pk Pl 2 Pi Pj Pk P1 

(2) 
ij ik 8 Pi~ Pj Pk PiPj Pk (1 + 4  Pi) Pi Pj Pk (1 + 2  Pi) 

(3) 
1j 1j 4 Pi 2 pj2 Pi Pj (�89 ( P i + P j )  + 2  Pi Pj) �89 PiPj (1 + P i + P j + 2  PiPj) 

(4) 
ij j k  4 Pi ~ Pj Pk 2 Pi ~ Pj Pk Pi z Pj Pk 

(5) 
n 1j 4 PP Pj Pi 2 Pj (1 + 2 Pi) PP Pj (1 + Pi) 

(6) 
n jj 2 Pi 2 Pj~ PP Pj~ 1/2 Pi z PjZ 

(7) 
ii ii Pi 4 �89 PP (1 + Pi) �89 Pi 2 (1 + Pi) 2 

N R ~ H  S 

FS 

if Pi > V~ NR 
~ H S  

Fs 
HS 

i f P i <  ~ N R ~ " ~ F  S 

FS 
HS / . - v  

NR ~ 
NR 

~ H S  

FS 

i f P i >  �89 NR ~-.._.__~__~ FS 

HS 

i f P i <  �89 NR 
N R ~  FS 

FS 

FS 

NR 

Table 2a. Example of the estimation of P{ (x,y)/Ai} for the meeting (ii), (ii) 

A i =  NR A i  = H S  A i  = F S  

Gamet ic  pool 
of the generat ion G 

i i  ii 

• Common 
Common ~ r e n t  
parent Pi 2 2Pi (1-P i 

i i ix Common \ 
parent  

Other  i i i i 
g a m e t e ~ N ~  ~iN~ 

P i i ~."~i!:~ ~:~ ~'~:::~ i~ ~ ~ .-" 

Pi 2 2Pi (1-P i ) 

ii ix 

Pi 2 i i  

2 Pi ( 1 - P i ) i x  

ii ii 

i i  i i  

P [ ( x , y ) / N R ]  =Pi 4" P [ ( x ,y ) /HS]=- -~ -P ,1  -3(1+Pi) p [ ( x , y ) / F s ] = l p i 2 ( l + p i ) 2  



106 

Thus, examining the observed pairs of genotypes, it 
should be possible to infer the importance of each 
possible kinship in our sample. 

For the nine polymorphic loci which are presumed 
to be independent: 

9 

P{(x, y)/Ai} = 1-~ PL{( x, y)/Ai} 
L=l 

Allelic frequencies are estimated with the electro- 
phoretic data of the G +  1 generation, as we supposed 
the frequency of the different alleles not to have 
changed in a drastic manner between the G generation 
of the "seed trees" to the studied G +  1 generation. 

At each pair of genotypes the three normalized 
probabilities 

P{(x, y) /a i l  P{(x, y)/Ai}, 

whose sum is unity can be associated. 
Then, at each pair there is a coresponding point in 

an equilateral triangle. Two different pairs, whose 
images are close in this triangle, behave in the same 
way with respect to different kinship types. Figure 2 
shows the distribution of the N ( N - 1 ) / 2 =  5356 pairs of 
different sampled trees in 100 subtriangles. 

As most of the 100 subtriangles defined are nearly 
empty, we group them into six classes (Fig. 2) in a 
manner that each class has an effective number higher 
than five hundred and that each class is as compact as 
possible (they shall thus be pertinent with respect to 
kinship examination). 

NR / z' m ~ " %  NS 

/ \ 
/ , . . - - ,  \ 

1.0 0.5 0 
FS 

Fig. 2. Distribution of the 5356 pairs for their relative pro- 
babilities of P { (x, y)/Ai} with the three genetic relationships 
Nr, HS and FS 

The probability of a pair of genotypes to belong to 
each class can be calculated as a function of allelic 
frequencies in the parental population under the three 
possible genetic relationships within the pair. Let Pj, i 
be the probability that a pair of genotypes with Ai th 
kinship type belongs to class j. Theoretically, Pj, i can 
be calculated by summing the probabilities associated 
to all possible pairs of genotypes belonging to class j. 
As it is practically impossible, we simulated 40,000 
pairs of genotypes for each considered kniship type as 
follows: each time the right number of parents (4, 3 or 
2) is drawn at random out of the parental population 
by using a uniformly distributed random variable U on 
(0, 1) for each of the nine loci and for each parent. 
Then, to constitute an offspring pair, random gene 
segregation is simulated using another independent 
uniformly distributed random variable V on (0, 1), for 
each locus and each gamete. 

In order to accelerate convergence, these computa- 
tions were made by independent blocks of four off- 
spring pairs with a given genetic relationship. The four 
offspring pairs in a block are computed with the four 
sets of random variables (U, V), ( I -U,  V), (U, l-V) and 
( l -U,  l-V) (see Fig. 3). Since a uniform variable and its 
antithesis have the same distribution, final estimation is 
unbiased; but since they are negatively correlated, we 
can expect "more than normal" different genotype pairs 
within a block and, consequently, much less variability 
between the blocks. Indeed, we observed that the 
probability estimator variances were about one ninth of 
their expected values if the same number of offspring 
pairs were simulated independently. 

For each simulated offspring pair, its class is deter- 
mined and the estimator ~ ,  i of Pj, i is the proportion 
of offspring pairs simulated under the Ai th genetic rela- 
tionship type which fall into the j th class. Figure 4 
shows the comparison between the three theoretical 
population proportions and that of Bonnetage. 

2 Kinship importance or estimation o fP (A i) 

With a sample of N trees, it is possible to make N/2 
disjoint pairs: each tree of odd rank is paired with the 
tree of following even rank. There are N!/(N/2)! 
�9 (2 N/z) such different sets of N/2 disjoint pairs, each 
one corresponding to a certain permutation T of the 
ranks. 

Kinship within a particular set of N/2 disjoint pairs 
can be approached by the proportions PNR, PUS, PFS of 
respectively non related, halfsibs and full sib pairs. 

Let Mj(T) be the number of pairs in this set 
belonging to classj. We have: 

3 

E(Mj(T)) = (N/2) �9 ~ Pji" P(Ai)T. 
i = l  



"Unrelated" population 

Offsprings X ~  Y 

Pairs ix,v) ix, Y) 

| �9 | @ 

x" x" r" ~" 

"Half-sib"population 
Parents ~ (~1~,,~__~ 
Offsprings 

Pairs Ix,v) (Z?) (KY'} ~',~' 

"Full- sib" population 

Parents x ~ 7  x ~  Y 
Offsprings ~ " 

Pairs I x,Y) (x,Y} (x'Y'} ( ~,,{, ) 
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Fig. 3. Mating schemes of three 
simulated populations with three 
different genetic relationships be- 
tween the offspring (bars indicate 
antithetics) 

~.A o 
/ \ 

/ \ 

/ /  D \ \  /._~_.a\ 

@A ~ , \ a A  ~ 
/ L \  ,' ~ I ~ ', /\ 

~'c~%.Z~ i \0~'~ 1.0 0.5 FS 0 ~ - ~ . /  XO-%~ 
7 ~  �9 / /~v "Bonnetoge" population ~/"~. I ~  ~ 

/, T, \ \ 
1.o 0.5 o ~ o /  i l  \o .% 1.o o.s o 

FS ~;~.. ~" / X  ~ FS 
"No rel~ p~176 / T 1  ~ "Fullsib"poput~ l 

~ /  I \ G  
I.O 0.5 o 

FS 
"Half sib" population 

Fig. 4. Distributions of pairs ac- 
cording to their relative values 
of P{(x,y)/Ai} for the three 
simulated populations and the ob- 
served one 

I f  all N /2  disjoint pairs were independent,  the pro- 
portions PAl(T) could be estimated by several meth- 
ods: minimum chi-square, maximum likelihood, least 
squares. We are interested in the proportions P ~  not 
relative to a particular set o f  N/2  disjoint pairs but in 
the set of  all pairs. These proportions can be estimated 
as the mean values over all permutations of  all particu- 
lar PAi(T). Only the means of  the least squares esti- 
mators can easily be calculated (as the solutions o f  
linear equations). 

But the variance-covariance matrix o f  these esti- 
mators is unknown since all N. ( N - l ) / 2  different pairs 
are not independent; moreover since by hypothesis we 
cannot discard the kinship structure in the sampled 
population, all pairs of  a set of  N/2  disjoint pairs 
cannot be regarded as independent.  Therefore, it is very 
difficult to get an idea about the parameter  estimators 
precision. 

A 

The means '  estimators PAi must have a variance less 
than the mean variance o f  all P A i ( T ) .  Therefore, we 
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considered the variance of ~ (T) in the "median case" 
(where Mj=  1 / 6 •  calculated in all N/2 pairs were 
independent). This variance equals N/2 • 1/6•  5/6 as 
a maximum for the variance of P--~. 

3 Results 

We found: PNR=0.4; PHS=0.6; PFS=0.0 with the 
standard deviations of PNR and PHS being less than 
0.14 and 0.17. Similar results are found in the 47 
tree sample. Under the hypotheses on which our model 
is based, PFS is certainly very small. Thus, we can 
consider that there are nearly no full sibs in the 
prospected trees. Although the proportion of half sibs is 
surprisingly very high. 

The absence of full sib pairs can be easily ex- 
plained by the sampling method used and the small 
number of  existing bibliographic references: 10% of the 
trees are less than 100 m apart, which is the average of 
the seed dispersal. In this area we could hope to find 
the full sibs and halfsibs of  mother. 

On the other hand, 10% of the pairs are more than 
600 m apart which correpsonds to the average of pollen 
dispersal, and so to genetically unrelated trees (Fig. 5). 
Because of the prospection method used, we could 
expect to see only paternal half sibs. Thus, considering 
that no full sibs are present, we can partition the 
sampled population into paternal half sibs families. If  
we suppose that these families are of the same size, a 
PHS = 0.2 (under our hypotheses the proportion of half- 
sibs is certainly higher) means that there are only five 
such families! Of  course there can be more families but 
at least one must be larger. For instance, the maximum 
number of such families is given by a lot of families 
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Fig. 5. Histogram of geographical distances between pairs of 
trees 

reduced to one tree and only one large family which 
represents about 45 % of the total sampled population! 

This is rather difficult to believe, even if we suppose 
a low number of pollen producers in the parental 
generation as it means that either a low number of  trees 
were kept in the stand 150 years ago or that a few trees 
produced a large amount of pollen. Nevertheless, the 
estimated proportion of half-sib pairs seems far too 
high. 

Can this result be regarded as an evidence for 
rejecting the Hardy-Weinberg's equilibrium hypothesis 
in the parental population G? 

The high value of PHs is due to the relatively high 
proportion of class 1 and 2 tree pairs and a relatively 
low proportion of tree pairs in class 3. In other words 
(Table 2) there is an excess of pairs of trees sharing 
several common alleles, with respect to the hypothesis 
of a Hardy-Weinberg's equilibrium in the parental 
population (even with a reasonable proportion of half 
sibs). 

We made three hypotheses for estimating the re- 
lative importance of each kinship type, and each one is 
questionable. 

1. Allelic frequencies in the parental population 
were similar to those observed in the sampled popula- 
tion. In fact, allelic frequencies in the G generation 
could not be estimated in an other way since only the 
sampled generation had been studied. Even if a kinship 
structure exists in the analysed sample, these estimates 
are unbiased. Nevertheless, the way in which the trees 
were prospected could have had a negative effect on 
these estimations. That is the reason we made an other 
estimation with a sub-sample, but our results did not 
show a great sensitivity to this change. 

2. All loci are independent. This hypothesis is very 
critical when one works with several loci as we did. 
Independence means, from a genetical point of view, 
no physical linkage of the loci on the chromosomes, 
and no epistatic effect between different loci. Inde- 
pendence between all pairs of loci was tested statisti- 
cally (Fisher's exact probability test) but these tests 
could not be very powerful since we also had to pool 
together rare genotypes. Independence was not rejected 
even for ESTl and EST2 which we know to be linked 
(Lundkvist 1979). I f  independence does not exist then it 
leads to an increase in the number of pairs belonging to 
classes 1 and 2. So we made nine different analyses, 
avoiding one locus each time: identical results were 
found. But probably, the EST1. EST2 linkage is 
screened by the high frequency of E S T I - b  (Table 1). 
This locus behaves as if there is only one allele. 

3. Genotypic frequencies in the G parental popula- 
tion correspond to Hardy and Weinberg's proportions. 
It seems reasonable to suspect that Hardy and Wein- 
berg's equilibrium in the parental population did not 



exist, since our results would have been more under- 
standable if preferential mating between neighbour 
trees could be supposed, associated with a genetic 
spatial structure (neighbour trees are supposed to be 
genetically closer). 

I f  we look at the histogram of  distances between 
sampled trees (Fig. 5), more than 40% of  the pairs are 
less than 200 m apart and therefore a large proportion 
of  them could be genetically "more  alike" than normal, 
and, behave as "hal f  sibs" in our model. Of  course, to 
be really convincing this hypothesis should be more 
carefully studied in order to examine if  in this frame 
the observed results are likely. 

In fact, kinship in the parental population and a low 
number  o f  pollen producers are not conflicting pheno- 
mena and both may explain the G + 1 genotypic struc- 
ture. 

T e s t  of a c o r r e l a t i o n  b e t w e e n  g e n e t i c  
a n d  t o p o g r a p h i c  p r o x i m i t i e s  

For each pair of  trees, the estimated probability to be 
half  sibs, conditional to the observed genotypes, is an 
empirical genetical proximity (the probability to be full 
sibs is nearly zero for any pair and cannot be used). 

As a first test, we plotted geographic distance 
against this probability. To keep the picture readable 
only the ranks o f  the mean values o f  all 50 m (topo- 
graphic distance) tree pair classes were plotted (Fig. 6). 

I f  there is no relationship between the genotype o f  a 
pair and its topographic distance, any permutation of  
the genotypes of  the N observed trees, gives as likely a 
distribution as the observed one. Thus, any measure o f  
correlation between both proximities has a probability 
distribution which is invariant by permutation under 
this hypothesis. On the contrary, if there is a genetic 
spatial structure in the sense that neighbour trees are 
genetically more alike than distant trees, the same 
measure of  correlation is expected to be higher and has 
a distribution which is not invariant by tree genotype 
permutation. 

We computed Spearman's rank correlation coeffi- 
cient, r, between the probability to be HS and topo- 
graphical distance, over all 5,356 pairs, and found 
r= -0 .016 .  

This remark leads to a permutation test. I f  we 
compute the probability distribution o f  Spearman's  
rank correlation coefficient under random permutation 
o f  all genotypes we shall reject at level a the hypothesis 
o f  no linkage if the probability to be less than the 
observed value is less than a. This is a unilateral test of  
the hypothesis of  no relation against the hypothesis o f  a 
spatial genetic structure. 

r was computed each time after 2,600 independent 
random permutations (the 104 individual genotypes are 
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permuted each time, not the pairs). We found only 54 
permutations which gave a correlation coefficient less 
than the observed one. Thus, the estimated prob- 
ability, under the hypothesis o f  no link, that r be less 
than the observed value, is 0.02. 

Thus, with an a risk 0.05, a link exists between 
genetical and geographical closeness. 

R e m a r k s  

P{(x, y)/HS} x PHS 
1. P{HS/(x,y)}- 3 

p{(x, y)/Ai} x P(Ai) 
i= l  

let PHS = ~'; if we consider that PFS=0, then PNR = 1-- ~U, and 

P{(x, y)/HS} 
P {HS/(x, y)} - 

P{(x, y)/HS) + P{(x, y)/NR} �9 1 - ~t 
q; 

the ranks defined on all tree pairs by P{HS/(x,y)} are the 
same as those defined by P{(x,y)/HS}/P{(x,y)/HS} 
+P{(x, y)/NR}. Consequently the ranks do not depend on 
the estimation of PAi, if we admit that P FS = 0. 

2. The distribution of r under tree genotype permutation 
has nothing to do with the distribution of a Spearman's rank 
correlation coefficient on a sample of independant pairs. Over 
all 2,600 permutations, we found a mean value: +0.039 (with 
variance = 0.00065). 

C o n c l u s i o n  

The genetic proximity was defined without any refer- 
ence to tree localisation. Our test enables us to reject 
the hypothesis that, conditional to the observed geno- 
types and tree localisation, the way in which the geno- 
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types are a t t r ibuted to the sampled  trees is purely 
random:  trees which are close are more alike than 
distant trees. In spite of  the complex way in which this 
proximity was defined, it is a measure  o f  genetic 
closeness. 

I f  this result is a product  o f  mat ing in a neighbour-  
hood, it implies that the popula t ion  doesn ' t  follow the 
Hardy and Weinberg ' s  equi l ibr ium. However,  testing 
directly this last hypothesis  does not  seem the best 
me thod  (al though it could be improved  by using all 
loci s imultaneously,  but  the hypothesis  o f  loci indepen-  
dence would be in this case open to criticism). 

Have we answered the questions expressed at the 
beginning of  this study? We can not give an expression 
of  the kinship est imator  precision which would not 
allow us to use this method as a test of  Hardy  and 
Weinberg ' s  equi l ibr ium in the parenta l  populat ion.  

Nothing  is known about  the size of  these consan- 
guinity circles: in examining Fig. 6, let us suspect a 
d iameter  about  600 m which gives a radius of  the same 
order  of  magni tude  as the pol len dispersion repor ted in 
the literature. 

Several problems belong to the present  methods  of  
gene marke r  techniques and prospection:  

- only eleven loci were avai lable which should have 
been sufficient. However,  in common with popula t ion  
genetic studies using such gene markers,  the frequency 
of  the allele has a higher  frequency than 0.5, and 
usually only 2 or  3 alleles exist in the populat ion.  This 
masks the genetic relat ionship as all the individuals  
have nearly the same allelic composit ion.  Increased 
precision would require  more loci, or the use of  other  
techniques like 2D electrophoresis.  
- As we have seen, the help of  l i terature data must lead 
to a bet ter  representat ion o f  the three different type of  
genetic relat ionships by increasing the low and high 
distance pairs. New prospect ing methods  have to be 
found, considering at the same t ime the improvement  
in the kinship knowledge but  also, the limit of  seedtots 
which can be reasonably  collected. 

Nevertheless,  this method  has a more  general  in- 
terest, for the natura l  popula t ion  studies, as it allows, 
with more efficiency, a synthetic use o f  information 
from electrophoret ic  markers.  
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